Calculate Trace Length from Time Delay Value for High-speed Signals

How to Calculate Trace Length from Time Delay Value for High-speed Signals

Menu
To keep a good high-speed signal quality from driver to receiver on a PCB is not an easy task for designers. One of the most challenging issues is managing the propagation delay and relative time delay mismatches. To manage the time delays in PCB design, we need to know how to calculate trace length from time delay value in order to implement the PCB trace routing accordingly. Let me take you through the process…

Calculating signal speed on a PCB

According to physics, electromagnetic signals travel in a vacuum or through the air at the same speed as light, which is:

Vc = 3 x 108M/sec = 186,000 miles/second = 11.8 inch/nanosecond

A signal travels on a PCB transmission line at a slower speed, affected by the dielectric constant (Er) of the PCB material. The transmission line structure also affects the signal speed.

There are two general PCB trace structures [note*]: stripline and microstrip.

The formulas for calculating the signal speed on a PCB are given below:

2_formula-1

Where:

  • Vcis the velocity of light in a vacuum or through the air
  • Er is the dielectric constant of the PCB material
  • Ereffis the effective dielectric constant for microstrips; its value lies between 1 and Er, and is approximately given by:

Ereff≈(0.64 Er+ 0.36)     (1c)

With those formulas, we know that the speed of signals on a PCB is less than the signal speed through the air. If Er≈4 (like for FR4 material types), then the speed of signals on a stripline is half that of the speed through the air, i.e., it is about 6 in/ns.

How to calculate propagation delay (tpd)

The propagation delay is the time a signal takes to propagate over a unit length of the transmission line.

Here is how we can calculate the propagation delay from the trace length and vice versa:

Formula - How to calculate propagation delayWhere:
  • Vis the signal speed in the transmission line

In a vacuum or through the air, it equals 85 picoseconds/inch (ps/in).

On PCB transmission lines, the propagation delay is given by:

Formula - Calculating PCB signal speed on striplines and microstrips

Case study: Calculating trace length on a PCB

In order to be compliant with the specification of JEDEC, the maximum skew among all the signals shall be less than +/-2.5% of the clock period driven by the memory controller. All the signals of SDRAM are directly or indirectly referenced to the clock.

In this example, the normal FR4 material with a dielectric constant of 4 is used on the PCB with a differential clock rate of 1.2GHz (i.e., 833ps clock period):

Question: What is the maximum skew of the trace length for all the signals?

Answer: Max skew in time delay = +/-2.5% of the 833ps clock period = 20.825ps FR4 Er≈4, Ereff≈2.92

So, for strip lines, the maximum skew should be less than +/- (20.825/(85*SQT(4))=+/-0.1225 in = +/- 122.5 mil.

For microstrips, the maximum skew should be less than +/- (20.825/(85*SQT(2.92)) = +/-0.1433 in = +/- 143.3 mil.

Note*: Different microstrip and stripline structures will affect the signal speed, but only slightly.

Keep this information in mind the next time you’re calculating trace lengths; it should make the job a little easier for you.

References:
–  Signal Speed and Propagation Delay in a PCB Transmission Line, Atar Mittal
–  JEDEC

Also see:

CR-8000 – PCB Design Software Overview

Click Here

CR-8000 – PCB Simulation & Analysis

Click Here

Lance Wang
Lance Wang
Solutions Architect
Lance Wang is a solutions architect in Zuken SOZO Center. He supports CR-8000 product line, mainly focusing on high-speed PCB design and signal integrity features. When not behind the keyboard or in front of customers, he is a Tom Brady fan and enjoys playing ping pong in the spare time.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

wp-header-1920x844-pcb-2025-2-510x310
  • Blog
Januar 31, 2025
Die wichtigsten PCB-Design-Trends für 2025

Die Leiterplattenindustrie entwickelt sich ständig weiter, da technologische Fortschritte und neue Marktanforderungen die Grenzen des Machbaren immer weiter verschieben. Bis 2025 werden mehrere wichtige Trends die Branche prägen. Mehr erfahren? Jetzt in unserem Blog nachlesen!

Read now
wp-header-1920x844-supply-chain-1-510x310
  • Blog
Januar 23, 2025
Supply Chain Risk Management in PCB Design with SiliconExpert and CR-8000 Integration

Supply chain risk management is critical for electronics design. By integrating SiliconExpert with CR-8000, engineers gain tools to streamline component selection, manage obsolescence, and ensure design continuity. This integration supports efficient workflows, reduces costs, and mitigates supply chain disruptions.

Read now
Industrial Automation: A focused engineer interacts with a futuristic holographic interface, showcasing the power of advanced technology in a modern industrial setting
  • Blog
Dezember 05, 2024
Die Zukunft gestalten: Herausforderungen und Innovationen im IoT der Industrie

Von der Automatisierung bis zur Echtzeitanalyse – das Industrial Internet of Things (IIoT) verändert die Industrie grundlegend. Doch hinter den Chancen lauern Herausforderungen: Können Sicherheit, Altgeräte und komplexe Systeme in Einklang gebracht werden? Erfahren Sie, wie intelligente Fabriken der Zukunft gestaltet werden und warum das IIoT der Schlüssel dazu ist.

Read now
wp-header-1920x844-pcb-510x310
  • Blog
November 28, 2024
Stack-Up Design und Impedanzkontrolle für High-Speed Leiterplatten

Der Layer-Stack-up und die präzise Berücksichtigung der Leitungsimpedanz sind entscheidend für robuste High-Speed-Designs. Erfahren Sie in unserem Blog, wie Sie Stack-ups optimal mit CR-8000 und Polar Speedstack™ gestalten können.

Read now